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CHLORIDE CONCENTRATION DISCRIMINATES BETWEEN
FOOT-AND-MOUTH DISEASE VIRUS IRES-DEPENDENT
TRANSLATION AND CLASSICAL SCANNING TRANSLATION:
NEW ASPECTS OF THE PICORNAVIRUS SHUTOFF MECHANISM
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Summary. — Some picornaviruses might use the general increase of ionic strength in the host cell that
occurs successively after infection to induce shutoff of host protein synthesis and to stimulate viral protein
synthesis. In order to investigate this discrimination mode on a molecular level, in vitro experiments under
different salt conditions comparing the Foot-and-mouth disease virus (FMDV) internal ribosome entry site
(IRES)-dependent translation with the translation via the classical scanning mechanism were performed. For
classical mRNA optimum concentrations of all investigated salts ranged between 70 and 100 mmol/l. However,
for FMDV IRES-dependent translation the optima depended strongly on the anion used. While acetates caused
only a weak stimulation of translation efficiency with maxima ranging between 150 and 180 mmol/l, chlorides
lead to a strong stimulation with maxima ranging between 120 and 150 mmol/l. Competition experiments
revealed that the concentration of chlorides had a greater influence on the discrimination between cellular and
viral RNA translation than the total ionic strength. Taken together, the data support a model in which a specific
increase in the chloride concentration rather than a general increase in the ionic strength is responsible for the

shutoff effect induced by some picornaviruses.
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Introduction

Picornaviruses are widespread in nature and cause
important diseases in man (e.g. poliomyelitis) and animals
(e.g. FMD). They contain a single-stranded, positive-sense
RNA genome that functions as an mRNA within infected
cells to produce a single polyprotein, which is subsequently
proteolytically cleaved to yield structural and non-structural
virus proteins (Rueckert, 1996). In contrast to most cellular
mRNAs, which are capped and translated by the classical
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Abbreviations: 4E-BP1 = elF4E-binding protein 1; CAT = chlor-
amphenicol acetyltransferase; eIFAE = eukaryotic translation
initiation factor 4E; elF4G = eukaryotic translation initiation factor
4G; EMCV = Encephalomyocarditis virus; FMDV = Foot-and-
mouth disease virus; HRV = Human rhinovirus; IRES = internal
ribosome entry site; Luc = luciferase

scanning mechanism (Kozak, 1978, 1989), picornavirus
RNAs are uncapped and initiate translation by internal
ribosome binding (Pelletier and Sonenberg, 1988; Jang et
al., 1988). The IRES was demonstrated to be a cis-acting
element that directs in vivo the binding of ribosomal subunits
and cellular protein factors to the viral RNA in order to
accomplish internal translation initiation (for recent reviews
see Jackson and Kaminski, 1995; Belsham and Sonenberg,
1996, 2000). On the basis of their sequence and structure,
IRESes are usually divided in two types: the cardio- and
aphthovirus type (I) and the entero- and rhinovirus type (II).
Within each type, there is moderate conservation of primary
structure (nucleotide sequence) of the IRES and even
stronger conservation of deduced secondary structure.
However, there is almost no conservation between the two
types.

For many picornaviruses infection of cells results in
a shutoff of host protein synthesis. Several functioning
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mechanisms for this phenomenon were proposed. It is now
well established that picornaviruses with the IRES of the II
type and FMDV support the shutoff by cleavage of the
initiation factors eIF4GI and eIF4GII (Gradi et al., 1998;
Svitkin et al., 1999; Zamora et al., 2002) by either the 2A
proteinase of rhinoviruses or enteroviruses or by the L
proteinase of aphthoviruses (Glaser et al., 2001). Another
contribution to the shutoff phenomenon, at least in these
viruses, comes from the cleavage of the poly(A)-binding
protein (PABP) (Joachims ez al., 1999; Kerekatte et al., 1999;
Kuyumcu-Martinez, 2002). However, cleavage of protein
factors alone is not sufficient to explain shutoff for all
picornaviruses, because no degradation of host factors occurs
during cardiovirus infection (Abreu and Lucas-Lenard, 1976;
Jen and Thach, 1982; Zoll et al., 1996). Another mechanism
that seems to be involved in the shutoff of some but not all
picornaviruses is dephosphorylation of the 4E-BP1 factor
(Gingras et al., 1996, Svitkin et al., 1999), a process in which
protein 2A seems to be involved directly or indirectly
(Svitkin et al., 1998). The underphosphorylated form of
4E-BP1 sequesters the cap-binding initiation factor eIF4E
into an inactive eIF4E—4E-BP1 complex and thus inhibits
the cap-dependent translation (Haghighat et al., 1995,
Niedzwiecka et al., 2002). Another mechanism, which is
not mutually exclusive, is the dephosphorylation of eIF4E
itself (Kleijn ef al., 1996). All these mechanisms are based
on virus-induced alterations of cellular translation factors.
A principally different mechanism of shutoff has been
proposed by Carrasco (Smith and Carrasco, 1976; Carrasco,
1977). The Carrasco's “membrane leakage” model can be
summarized as follows: the entry of the virus is associated
with permeabilization of the host cell, distorting the gradient
of monovalent ions which the membrane maintains: whereas
sodium and chloride leak in, potassium leaks out from the
cytoplasm. Whereas the resulting increased concentration
of monovalent ions, inside the cell inhibits the initiation of
host protein synthesis, the initiation of translation of viral
mRNAs is stimulated. Later it has been shown that host cells
indeed are permeabilized by picornaviruses (Carrasco, 1981,
Almela et al., 1998) and that the resulting perturbation of
monovalent cation balance favors, at least for Encepha-
lomyocarditis virus (EMCV), translation of viral RNA at
the expense of host mRNA (Alonso and Carrasco, 1982;
Lacal and Carrasco, 1982).

In this study the influence of different monovalent salt
concentrations on the efficiency of cellular and FMDV
IRES-dependent translation was investigated in a rabbit
reticulocyte cell-free system. The obtained data support the
“membrane leakage” model for cardioviruses and aphtho-
viruses. Moreover, they suggest a special role for chloride
ions in this shutoff mechanism. Evolutionary aspects of the
shutoff phenomenon induced by picornaviruses are
discussed.

A LUC AAAA...

B CAT IRES LUC

Fig. 1
RNA species used in this study
A. Luc RNA. B. CAT-FMDV-Luc RNA.

Materials and Methods

Chemicals. Restriction enzymes were purchased from MBI Fer-
mentas. Salts were purchased from Sigma-Aldrich. Plasmid pre-
parations were performed using the “Plasmid Midi Kit* (Qia-
gen) according to the manufacturer's instructions.

RNA species. Monocistronic polyadenylated Luc RNA
(Fig. 1A) was supplied by Promega. Bicistronic CAT-FMDV-Luc
RNA (Fig. 1B) originated from the pD128 vector (Niepmann et
al., 1997): The vector DNA was linearized with Hpal, purified
with proteinase K, extracted with phenol/chloroform extraction
and ethanol precipitated.

Run-off transcription was performed using SP6 RNA poly-
merase (MBI Fermentas). The efficiency of RNA synthesis was
checked by agarose gel electrophoresis and photometry.

In vitro translation of run-off transcripts was accomplished
using the Rabbit Reticulocyte Lysate System (Promega). The stan-
dard lysate contains 30 mmol/l K* (Hempel et al., 2001) and other
compounds added by the manufacturer, e.g. 113 mmol/l potassium
acetate.

In contrast to the manufacturer's instructions 5 ul of lysate was
used in a 10 pl standard assay. By use of pooled lysates reprodu-
cible translation results could be achieved with SD of <3% within
1-2 weeks after mRNA preparation (Hempel ef al., 2001). Stan-
dard translation conditions comprised 1.6 U/ul RNasin, 20 pmol/l
amino acids without methionine and 0.4 mCi/ml [**S]methionine.
Various monovalent salts were added as indicated. 40 ng/ul RNA
in each reaction was used to initiate the translation. Since at that
high concentration capped and uncapped RNAs show comparable
translation efficiencies (Beckler, 1992), all translation reactions
were carried out with in vitro generated uncapped RNA. The RNA
was heated to 95°C for 2 mins prior to addition to the reaction
mixture. The translation reaction proceeded at 30°C for 1 hr.

Luciferase activity assay. 20 ul of the “Luciferase Assay Rea-
gent” (Promega) was mixed with 1 ul of an appropriately diluted
in vitro translation reaction mixture. The light produced was mea-
sured immediately in a luminometer (Lumat type LB9501,
Berthold).

Analysis of radiolabeled proteins. In vitro translation reaction
mixtures were analyzed by polyacrylamide gel electrophoresis in
the presence of tricine-sodium dodecyl sulfate (SDS-PAGE, Schig-
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Fig. 2
Monovalent ion requirements for Luc RNA (A) and CAT-FMDV-Luc RNA (B)
(Lysates instructed with Luc RNA containing 120 mmol/l RbCl and 120 mmol/l NH,Cl were not measured.)

1: Standard; 2-5: 30, 60, 90, 120 mmol/l Li*; 6-9: 30, 60, 90, 120 mmol/l Na*; 10-13: 30, 60, 90, 120 mmol/l K*; 14-17: 30, 60, 90, 120 mmol/l Rb*;

18-21: 30, 60, 90, 120 mmol/l Cs*; 22-25: 30, 60, 90, 120 mmol/l NH *.

ger and von Jagow, 1987), loading 2 ul of sample per track. The
gels were exposed to “BAS-IIIs” plates (Fuji) overnight and scan-
ned using the Fujix type BAS 1000 (Fuji) phosphorimager. Rela-
tive band intensities were measured using the enclosed software.
In parallel 2 ul aliquots of the translation reaction mixture were
taken for assay of incorporation [*S]methionine into trichloroace-
tic acid precipitable protein. These measurements revealed the same
relative translation efficiencies compared to those obtained by the
enzymatic assay.

Results

Two RNA species were used in the translation experi-
ments (Fig. 1). Luc RNA served as a model for cellular
mRNA translated via the classical scanning mechanism
(Kozak, 1989). CAT-FMDV-Luc RNA contained two
cistrons: the CAT cistron was used as another model of host
mRNA, while the Luc cistron served as model of FMDV
RNA translated by an IRES-dependent mechanism.

Monovalent ion requirements for optimal translation
of cellular and FMDV IRES-dependent Luc cistron are
totally different

Fig. 2 depicts the detailed analysis of translation effi-
ciency of the two luciferase cistrons after addition of several
monovalent ions in different concentrations. The
concentrations of added salts given here represent
concentrations in addition to the endogenous potassium
acetate level in the translation cocktail. Translation
efficiencies were measured as luciferase activities in
a standard assay. For Luc RNA all the salt additions except
for 30 mmol/l NaCl, 30 mmol/l KCl, and 30 mmol/l CsCl
lowered the level of translation of luciferase, suggesting
an inhibitory effect of these salts (Fig. 2A). This effect
was only slightly dependent on the cation species as all
cations, at least at the concentrations of >60 mmol/l, led
to similar results. However, significant differences in the
translational efficiency were observed depending on the
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Fig. 3
Fluorograms showing the effect of different salt conditions on the translation efficiency of FMDV IRES-dependent translation (Luc) and
translation via the classical scanning mechanism (CAT) in an ir vitro translation system

A. Chlorides. 1: Standard; 2-5: 30, 60, 90, 120 mmol/l LiCl; 6-9: 30, 60, 90, 120 mmol/l NaCl; 10-13: 30, 60, 90, 120 mmol/l KCI; 14-17: 30, 60, 90,
120 mmol/l RbCl; 18-21: 30, 60, 90, 120 mmol/l CsCl; 22-25: 30, 60, 90, 120 mmol/l NH,CI.

B. Acetates. 1: Standard; 2-5: 30, 60, 90, 120 mmol/l LiAc; 6-9: 30, 60, 90, 120 mmol/l NaAc; 10-13: 30, 60, 90, 120 mmol/l KAc; 14-17: 30, 60, 90,
120 mmol/l RbAc; 18-21: 30, 60, 90, 120 mmol/I CsAc; 22-25: 30, 60, 90, 120 mmol/l NH,Ac.

anion used. While up to addition of 60 mmol/I salt chlorides
led to similar or even higher translation efficiencies than
acetates; at higher concentrations (>90 mmol/l) chlorides
led to significantly lower protein yields. At these high
concentrations translation was much more inhibited by the
chlorides than by acetates. There was a remarkable drop in
the translation efficiency with an increase in the chloride
concentration from 60 to 90 mmol/I.

For the Luc translation controlled by FMDV-IRES a to-
tally different picture was observed (Figs. 2B and 3). In
contrast to the results obtained with Luc RNA, this kind of
translation was lowest under standard conditions. All chlorides
strongly stimulated translation with optima ranging from 60
to 90 mmol/l of added salt. Most cations caused similar

translation enhancements. The physiological cations Na* and
K* gave rise to the strongest stimulation effect. Only lithium
chloride proved to be clearly less efficient in supporting in
vitro translation. Acetates up to the added concentration of
60 mmol/l caused no significant alterations in the translation
efficiency. At high concentrations (addition of 90 mmol/l
and 120 mmol/l) acetates can be divided into two groups:
Whereas lithium acetate, cesium acetate, and ammonium
acetate had no significant effect on translation efficiency
even at these high concentrations, sodium acetate, potassium
acetate and rubidium acetate stimulated the in vitro
translation considerably. At 120 mmol/I the stimulation effect
of these acetates and the corresponding chlorides were in
a similar range.
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Fig. 4
Relative Luc/CAT product ratio in dependence on different salt conditions in an in vifro translation system

Gel band intensities of luciferase and CAT, respectively, under standard conditions (lane 1) were defined as 100%. The intensities of other bands were

related to these standards.

Chlorides discriminate much more strongly between
FMDV IRES-dependent and cellular RNA translation
than acetates

Since the bicistronic CAT-FMDV-Luc RNA construct
contains two differentially translated cistrons, it can be used
as an one-molecule competition system for comparing the
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prerequisite for preferential translation of FMDV IRES-
dependent RNA. This effect was most pronounced at the
added chloride concentrations of 90-120 mmol/l. Under
these conditions the product ratio shifted up to 70-fold
towards the IRES—dependent product in comparison to
standard conditions. Again, there took place the cation effect:
KCl led to the highest and LiCl to the lowest luciferase/
CAT ratio. Addition of acetate salts affected the product
ratio only slightly. Only at high concentrations a small shift
(at most a 5-fold) towards the IRES-dependent product could
be observed.

Discussion

Protein synthesis shows a strong requirement for K*, and
in in vitro translation experiments this requirement is

normally met by the addition of 70-120 mmol/l KCI or
higher concentrations of potassium acetate (Beckler, 1992;
Hempel et al., 2001; Jackson, 1991; Pelham and Jackson,
1976; Smith and Carrasco, 1976; Weber et al., 1977). The
optimum for Luc RNA lies within this range as can be
deduced from the following considerations: as the rabbit
reticulocyte lysate contained about 140 mmol/l K* (see
Materials and Methods) and the translation reaction mixture
contained 50% of the lysate, the final basic concentration
of K*was 70 mmol/l. For all the salts tested optimal
concentrations of monovalent cations laid between standard
conditions and those increased by 30 mmol/l, i.e. betweeen
70 mmol/l and 100 mmol/l. Translation efficiency of Luc
RNA was more sensitive to suboptimal chloride concentra-
tions than to suboptimal acetate concentrations, because by
exceeding the optimum concentrations chlorides exhibited
a stronger inhibition effect than the respective acetates.
The FMDV IRES-dependent Luc cistron required totally
different milieu conditions for an optimal translation
efficiency than the classically translated Luc cistron of the
Luc RNA. Except for lithium acetate, cesium acetate and
ammonium acetate, any salt tested stimulated the translation
efficiency. This was particularly true for chlorides at
additions of 60—90 mmol/l. The finding that lithium acetate,
cesium acetate and ammonium acetate exhibited no
significant influence on translation efficiency indicates that
neither the corresponding cations (Li*, Cs*, NH,*) nor the
anion (acetate) of these salts had any influence on FMDV
IRES-dependent translation. If this is true, the only salts of
which both cation and anion stimulate translation efficiency
will be sodium chloride, potassium chloride and rubidium
chloride, while all acetates will show a pure cation effect
and lithium chloride, cesium chloride and ammonium
chloride will show a pure chloride effect. Since lithium
chloride, cesium chloride and ammonium chloride led to
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significantly different translation efficiencies, the influence
of chlorides might be modulated by different cations. Up to
addition of 60-90 mmol/l all chlorides stimulated translation
independently of its counterion. However, by exceeding this
critical concentration of chloride ions the translation
efficiency decreased. This relative inhibition was probably
not due to the rise in cation concentration, because with
sodium acetate, potassium acetate or rubidium acetate the
translation efficiency increased due to addition of these salts
up to 120 mmol/l. Therefore, the optimum concentrations
for cations seem to be higher than for anions.

Both the classically translated RNA and FMDV IRES-
dependent RNA exhibited sharp maxima for chloride ions.
These maxima appear at considerably different concentra-
tions. Therefore, it is almost impossible to create milieu
conditions, in which both RNA species are translated
efficiently.

This chloride effect obviously plays a much more
important role in discriminating between the classical and
FMDV IRES-dependent translation than the total concentra-
tion of monovalent ions: While addition of even 120 mmol/I
acetates led to at most 5-fold increase in the ratio of FMDV
IRES-dependent/classically translated product, replacement
of acetate by chloride could increase this ratio up to 70-fold.
These findings support the “membrane leakage” model.
According to this model the host shutoff is correlated with
the general increase of ionic strength in the host cell after
virus-induced permeabilization of the cellular membrane.
However, the results of this communication suggest a broa-
dening of the model, to include the influence of the ion
species on the discrimination between viral and host mRNA.
Because the CI" optima are much sharper than those for Na*
and K* it can be concluded that the successive increase in
CI' after viral infection rather than the increase in Na* or
the decrease in K* accounts for shutoff and subsequent
synthesis of viral proteins. Weber et al. (1977) have
speculated that high concentrations of CI' may interfere with
protein-protein and protein-nucleic acid interactions invol-
ving ionic bonds. Interestingly, the IRESes of cardio/aphtho
type need less host protein factors for efficient functioning
than the IRESes of the entero/rhino type and might therefore
be less sensitive to inhibition by CI ions. On the other hand,
the stimulatory effect of Cl ions for these IRESes was
probably due to a specific interaction with a viral factor that
is involved in the translation process.

Gingras et al. (1996) hypothesized that dephosphoryla-
tion of 4E-BP1 might have been used by all picornaviruses
early in their evolution, but cleavage of eIF4G has evolved
for some picornaviruses as a more efficient means to inhibit
host protein synthesis. This hypothesis is supported by the
fact that eIF4G is cleaved by different proteinases of different
picornaviruses at different sites: In entero- and rhinoviruses
the serine proteinase 2A is responsible for this processing

step whilst in aphthoviruses the cleavage is performed by
a thiol-type proteinase (Ryan and Flint, 1997). Thus, the
important elF4G cleavage activity has evolved convergently.
However, cardioviruses have not the ability to cleave eIF4G.
Therefore they alternatively might have developed the
“membrane leakage” strategy to augment the host shutoff.
Vice versa, the “membrane leakage™ strategy is probably
not used by entero- and rhinoviruses since the IRESes of
this type are less efficient compared to the IRESes of the
cardio- and aphthoviruses and at least poliovirus induces
the host shutoff before alterations in concentration of
monovalent ions are detectable (Lopez-Rivas et al., 1987).
Apparently, the entero- and rhinoviruses on one side and
the cardioviruses on the other side exclusively use one of
two general mechanisms to augment the host shutoff: entero-
and rhinoviruses have developed an “aggressive’ host factor
cleavage mechanism in order to be translated preferentially.
On the other hand, cardio- and aphthoviruses have evolved
a particularly efficient IRES to be preferred by the translation
machinery in the “competition race” against cellular mRNA
rather late in infection. The usage of different shutoff
mechanisms is also reflected by the kinetic patterns of total
protein synthesis. Whereas, e.g. in poliovirus-infected HeLa
cells the decline in host translation occurs well before the
onset of viral production, the decline in EMC V-infected cells
occurs much later and concomitantly with the onset of viral
translation (Jen et al., 1980). The late occurrence of changes
in the protein patterns of EMCV-infected cells can be
explained by a relatively long time needed to alterate the
ionic milieu within the cell so that viral translation is favored
and host translation disfavored.

Interestingly, the aphthovirus FMDV seems to use both
the cleavage of eIF4G and the “membrane leakage” strategy
to induce the shutoff. Possibly, before cardio- and aphthovi-
ruses have separated into different genera they have deve-
loped an efficient IRES in combination with the “membrane
leakage” strategy in order to augment the ancient shutoff
effect caused by dephosphorylation of 4E-BP1. Later on the
leader protein of aphthoviruses but not cardioviruses may
have acquired an eIF4G cleaving activity to accelerate the
inhibition of host mRNA translation early in infection. After
development of more efficient shutoff strategies some
picornaviruses may have lost the ancient 4E-BP1 dephospho-
rylation mechanism. Evidence for this hypothesis has been
provided by Svitkin et al. (1999), who were unable to detect
any 4E-BP1 dephosphorylation in the course of HRV-14 or
HRV-16 infections.
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